学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告126: 邱家豪 — Polynomial orbits in totally minimal systems

华体会(中国)-华体会(中国):2022-11-21 作者: 点击数:

报告华体会(中国)-华体会(中国)20221125日(星期五)9:00

报告平台:腾讯会议ID: 537 689 002  密码901178

报告人:邱家豪 博士

工作单位北京大学

举办单位:华体会网页版登录入口

报告简介:

In this talk,we will discuss the saturated theorem along polynomials in minimal systems. As an application, the following result is obtained: for a totally minimal system (X, T) and integer polynomials p_1, . . . , p_d, if every non-trivial integer combination of p_1, . . . , p_d is not constant, then there is some point x such that the set {(T^ p_1(n)x, . . . , T^ p_d(n)x) : n \in Z} is dense in X^d.

报告人简介:

邱家豪北京大学数学科学学院博士后,研究方向为拓扑动力系统和遍历理论2021博新计划支持。在Journal d'Analyse MathématiqueErgodic Theory and Dynamical systems》、《Discrete and Continuous Dynamical Systems》、《Journal of Dynamics and Differential Equations》著名SCI杂志发表多篇论文。


上一篇:学术报告127: 张瑞斌 — Diagram categories and invariant theory系列报告

下一篇:学术报告125: Dragan Rakic — Partial orders in rings based on generalized inverses– unified theory