学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告六十四:张然 — Weak Galerkin Finite Element Scheme and Its Applications

华体会(中国)-华体会(中国):2022-07-15 作者: 点击数:

报告华体会(中国)-华体会(中国):2022年07月26日(星期15:00-16:00

报告地点:腾讯会议 671652061

人:张然 教授

工作单位:吉林大学

举办单位:华体会网页版登录入口

报告简介:

The weak Galerkin (WG) finite element method is a newly developed and efficient numerical technique for solving partial differential equations (PDEs). It was first introduced and analyzed for second order elliptic equations and further applied to several other model equations, such as the  Brinkman equations, the eigenvalue problem of PDEs to demonstrate its power and efficiency as an emerging new numerical method. This talk introduces some progress on the WG scheme, which includes the applications on Brinkman problems, etc.

报告人简介:

张然,教授、博士生导师。现任吉林大学华体会网页版登录入口党委书记、院长兼公共数学中心主任,吉林国家应用数学中心主任。主要从事非标准有限元方法的数值分析、相关软件平台的开发及其在高分子材料等领域应用的研究,取得了一系列成果,在包括计算数学领域的重要期刊《SIAM J Numerical Analysis》、《Mathematics of Computation》、《SIAM J Scientific Computing》等上发表学术论文70余篇。入选国家“百千万人才”工程、教育部高层次人才奖励计划(青年),国务院学科评议组成员(第八届)。曾获中国青年科技奖、中国青年女科学家奖、宝钢教育优秀教师奖、教育部拔尖人才培养优秀教师奖等奖励。


上一篇:学术报告六十五:刘雪峰 — 矩阵及微分算子的特征值及特征函数的可量化误差估计方法

下一篇:学术报告六十三:马晨瑾 — 基于人群数据的人类疾病网络分析