学术动态

位置: 首页 > 科学研究 > 学术动态 > 正文

学术报告六十一:陈露 - Sharp Trudinger-Moser inequalities and existence and non-existence of their extremals

华体会(中国)-华体会(中国):2022-07-06 作者: 点击数:

报告华体会(中国)-华体会(中国):20227月8日(星期五14:30-15:30

报告地点:腾讯会议:990101182

人:陈露 副研究员

工作单位:北京理工大学

举办单位:华体会网页版登录入口

报告简介:Trudinger-Moser inequalities as the border line case of Sobolev inequalities have important applications in the fields of geometric analysis and PDEs. In this talk, I will give a survey about the history of Trudinger-Moser inequality and its important role in prescribing curvature problem and Schrodinger quation with the critical exponential growth.  Then I will present some new progress on sharp Trudinger-Moser inequalities including Trudinger-Moser involving degenerate potential and Trudinger-Moser inequalities on complete non-compact manifold, etc. Finally, Existence and non-existence for extremals of critical Trudinger-Moser inequality on bounded domain and whole space will also be discussed. The talk is based on joint work with G. Lu and M.Zhu.

报告人简介:

陈露,北京理工大学数学与统计学院副研究员,2018年博士毕业于北京师范大学,2019年在意大利访问比萨高师Malchiodi教授。长期致力于研究几何泛函不等式及非线性椭圆方程的研究,相关结果发表于Adv. Math, Trans. AMS, J. Funct. Anal, Calc. Var PDEs,中国科学等国际重要学术期刊。


上一篇:学术报告六十二:佘邦伟 — Numerical Analysis of a Compressible two phase model

下一篇:学术报告六十:马啸— Random semi-horseshoe for partially hyperbolic systems driven by an external force